EINSTEIN'S ACADEMY

10TH MATHS

UNIT- 4

	01111-4	
Choose tha correct answer		5X1=5
1. If in Δ ABC,DE BC, AB=	3.6cm AC=2.4cm then the length of AE is	
a)1.4cm	b) 1.8cm	
c)1.2cm	d) 1.05cm	
2. How many tangents can be	drawn to to the circle from the external po	oint?
a)one	b)two	
c)infinity	d)zero	
3. A tangent is perpendicular	to the radius at the	
a)centre	b) infinity	
c) point of contact	d) chord	
4. The two tangents from an ethen the value of LAOB is	external points P to a circle with centre at C	are PA and PB.If LAPB=70
a) 100°	b) 110°	
c)120°	d)130°	
5.n triangles ABC and EDF,	$\frac{AB}{DE} = \frac{BC}{FD}$ then they will be similar, when	
a) < B = < E	b) <a <d<="" =="" td=""><td></td>	
c) < B = < D	d) <a <f<="" =="" td=""><td></td>	

Answer tha following (ANY 5)

5x2=10

6.In \triangle ABC,D and E are points on the sides AB and AC respectively such that DE ||BC if $\frac{AB}{DE} = \frac{3}{4}$ and AC=15cm find AE.

- 7. A man goes 18 m due east and then 24 m due north. Find the distance of his current position from the starting point?
- 8.If \triangle ABC is similar to \triangle DEF such that BC=3cm,EF=4cm and the area of \triangle ABC=54cm² find the area of \triangle DEF.
- 9. Find the length of the tangent drawn from a point whose distance from a point whose distance from the centre of a circle is 5cm and radius of the circle is 3cm.
- 10.A man goes 18m due east and then 24m due north. Find the distance of his current position from the starting point?
- 11. Check Whether AD is the bisector of < A of \triangle ABC IF AB =5cm,AC = 10cm,BD = 1.5cm find AE.

- 12. 5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall at a point 4m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the distance by which the top of the ladder would slide upwards on the Geometry.
- 13. Two poles of height 'a' metre and 'b' metre are 'p' metre apart. Prove that the height of the point of intersection of the line joining the top of each pole to the foot of the opposite pole is given by

$$\frac{ab}{a+b}$$
- metre.

- 14. State and prove Thales theorem.
- 15.ABCD is a quadrilateral in which AB=AD the bisector of <BAC and <CAD intersect the sides BC and CD at the points E and F respective prove that EF||BD.
- 16.In the adjacent figure, ABC is a right angled triangle with right angled at B and points D,E trisect BC.P.T $8AE^3 = 3AC^2 + 5AD^2$.
- 17. Show that the angle bisectors of a triangle are concurrent.