EINSTEIN'S ACADEMY 10TH STANDARD **ALGEBRA UNIT -3**

CLASS: 10

SUB: MATHS

I. Choose the correct answer:			$7 \times 1 = 7$
1. $\frac{3y-3}{y} \div \frac{7y-7}{3y^2}$ is (A) $\frac{9y}{7}$ (B) $\frac{9y^3}{21y-21}$	(C) $\frac{21y^2-42y+21}{3y^2}$	(D) $\frac{7(y^2-2y+1)}{y^2}$	
2. If (x-6) is the HCF (A) 3	of x^2 -2x-24 and x^2 -kx- (B) 5	-6 then the value of k (C) 6	c is (D) 8
	equation $q^2x^2+p^2x+r^2=0$, then q,p,r are in(B) G.P.		the roots of the I G.P (D) None of these
4. The number of points of intersection of the quadratic polynomial x^2+4x+4 with the X axis is			
(A) 0 (B) 1 (C) 0 (D) 2 5. The solution of the system $x+y-3z = -6$, $-7y+7z=7$, $3z=9$ is (A) $x=1$, $y=2$, $z=3$ (B) $x=-1$, $y=2$, $z=3$ (C) $x=-1$, $y=-2$, $z=3$ (D) $x=1$, $y=-2$, $z=3$			
6. The square root of (A) $_{5}^{16} \frac{x^{2}y^{4}}{y^{2}}$	f 256x $^{8}y^4z^{10}$ is equal to 25x6y6 $^{(B)}$ $^{9^2}$ 16 $^{y^2}$	(C) $\frac{16}{5} \frac{y}{xz^2}$	(D) $\frac{16}{5} \frac{xz^2}{y}$.
7. Which of the follo (A) $4x^2$	wing should be added `(B) 16x²	to make x^2+64 a per (C) $8x^2$	fect square? (D) -8x².
II. Answer any FIVE questions:(Q.No.14 is compulsory) 8. Find the LCM of the given expression: $9a^3b^2$, $12a^2b^2c$ 9. Find the excluded values of the following expressions (if any): 10. Simplify: (i) $\frac{x+4}{3x+4y} \times \frac{9x^2-16y^2}{2x^2+3x-20}$.			
11. Find the square roo 12. Solve: 2m ² +19m+3	ot of the following expres		
 14. Find the zeroes of the quadratic expression x²+8x+12. III. Answer any FIVE questions: (Q.No. 21 is compulsory) 5 x 5 = 10 15. Find the values of a and b if the following polynomials are perfect square. 4x⁴-12x³+37x²+bx+a 			
	d her grand father have nird of her father's age p		One-half of her grand s age is 65. Four years ago

if Vani's grand father was four times as old as Vani then how old are they all now?

18. If one root of the equation $2y^2$ -ay+64 = 0 is twice the other than find the value of 'a'.

19. A ladder 17n feet long is leaning against a wall. If the ladder, vertical wall and the floor from the bottom of the wall to the ladder form a right triangle, find the height of the wall where the top of the ladder meets if the distance between bottom of the wall to bottom of the ladder is 7

17. Find the GCD of the polynomials $x^3 + x^2 - x + 2$ and $2x^3 - 5x^2 + 5x - 3$.

MARKS:50

TIME: 1.30 Hrs.

 $7 \times 1 = 7$

feet less than the height of the wall?

20. The hypotenuse of a right angled triangle is 25 cm and its perimeter 56 cm. Find the length of the smallest side.

IV. Answer all the question:

 $8 \times 1 = 8$

21. Draw the two tangents from a point which is 5cm away from the centre of a circle of diameter 6cm, Also, measure the lengths of the tangents. (OR)

A garment shop announces a flat 50% discount on every purchase of items for their customers. Draw the graph for the relation between the Marked price and the Discount. Hence find (i) the market price when a customer gets a discount of Rs.3250. (ii) the discount when the marked price is Rs.2500.

